
Intermediate value theorem, numerical equation solving

Suppose we want to numerically solve the equation f(x) = 0 for x ∈ [a, b].
A reasonable assumption to make is that f(a) < 0 < f(b). The intermediate
value theorem asserts that a solution exists, but it doesn’t tell us how to
find it. We can look at the proof of the IVT for a lead, but all that says is
that the solution is

c = sup {x ∈ [a, b] : f(x) < 0}

which we still can’t compute. The following two problems outline a new
proof of the intermediate value theorem that’s more useful for numerical
purposes.

The following problem is needed in the proof, it’s called the nested interval
theorem.
1. (a) Suppose that A and B are two non-empty sets of numbers such

that x ≤ y for all x ∈ A and y ∈ B. Show that sup A ≤ inf B.
(b) Consider a sequence of closed intervals I1 = [a1, b1], I2 = [a2, b2], . . . .

Suppose that an ≤ an+1 and bn ≥ bn+1 for all n. Prove that there is
a point x which is in every In.

Solution. Lets do part (a) first since we need it for part (b). Let α = sup A
and β = sup B. Notice that every element of B is an upper bound of A.
Therefore α ≤ b for all b ∈ B, and with similar reasoning we can conclude
that β ≥ a for all a ∈ A. This means that α is a lower bound for B, and β
is a lower bound for A. Thus α ≤ β since α is the least upper bound and
β is the greatest lower bound.

For the second part, we need to show that A = {an : n ∈ N} and B =
{bn : n ∈ N} satisfy the hypotheses of part (a). That is, we have to demon-
strate that an ≤ bm for any naturals n and m. This holds because

an ≤ an+m ≤ bn+m ≤ bm

and these inequalities hold because the intervals are nested within each
other.

Therefore sup A ≤ inf B, meaning that the interval [sup A, inf B] is non-
empty, and is a subset of In for all n. This is what we wanted to show.

2. (a) Suppose f is continuous [a, b] and f(a) < 0 < f(b). Consider the
midpoint m1 = (a + b)/2. Either,

• f(m1) = 0,
• f(m1) > 0, in which case f(a) and f(m1) have different signs
• f(m1) < 0, in which case f(m1) and f(b) have different signs.

Use this to find an interval I1 such that f has different signs on its
endpoints. Repeat this process more times to find a nested sequence
of intervals I1 ⊃ I2 ⊃ . . . .

(b) Use the nested interval theorem to find a solution to the equation
f(x) = 0.

Solution. We will specify the intervals In by their endpoints [an, bn], and
let mn = (an+bn)/2 denote the midpoint of the nth interval. Let I0 = [a, b],
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and define In+1 iteratively using In as follows

In+1 =


{mn} f(mn) = 0
[an, mn] f(mn)f(an) < 0
[mn, bn] f(mn)f(bn) < 0

Notice that, in all cases, In+1 ⊂ In. As such, the sets so constructed will
satisfy I1 ⊃ I2 ⊃ . . . . The previous problem tells us that there is a point c
that lies in all of these intervals.

Suppose for the sake of contradiction that f(c) > 0. This means that f
is positive one some interval J = (c − δ, c + δ) about c. Note that this
interval has length 2δ. However, In has length (b − a)/2n so if we pick n
big enough such that (b − a)/2n < δ, then In = [an, bn] ⊂ J . Because of
the way we constructed the In’s, we know that f is negative at some point
of In, contradicting that f is positive on J . Therefore f(c) = 0.

Some of you may have noticed that this is similar to the binary search
algorithm for a list. The implementation on a computer is going to be
similar.
3 (Bonus, numerical analysis). Implement an algorithm based on the
proof above that solves equations involving continuous functions. Use this
algorithm to approximate the root of x3 − 3x + 1. Your algorithm must
allow the user to specify the tolerance value ε, and the output x of your
algorithm must satisfy |f(x)| < ε.

If you are working with python, you can try and extend

def solve(f, a, b, tolerance):
pass

The derivative

4. Find f ′(a) where (a) f(x) = xn for n ≥ 2, (b) f(x) = 1/x and (c)
f(x) = sin x.

Solution.

f ′(a) = lim
h→0

(a + h)n − an

h

= lim
h→0

∑n
k=0

(n
k

)
an−khk − an

h

= lim
h→0

nan−1h +
(n

2
)
an−2h2 + · · ·

h

= lim
h→0

(
nan−1 +

(
n

2

)
an−2h + · · ·

)
= nan−1
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f ′(a) = lim
h→0

1
a+h − 1

a

h

= lim
h→0

a − (a + h)
a(a + h)h

= lim
h→0

−1
a(a + h)

= − 1
a2

f ′(a) = lim
h→0

sin(a + h) − sin a

h

= lim
h→0

sin a(cos h − 1) + cos a sin h

h

= sin a · lim
h→0

cos h − 1
h

+ cos a · lim
h→0

sin h

h

= cos a

5. What are the slopes of the tangents to the curves f(x) = 1/x and
g(x) = x2 at the point of of their intersection? Find the angle between
these tangents.

Solution. Where do these curves intersect?

x2 = 1
x

=⇒ x3 = 1 =⇒ x = 1

Using the results from a previous question we conclude that f ′(1) = 2 and
g′(1) = −1.

The angle of inclination of the first line is θ = arctan 2, and the second
line is φ = arctan(−1). Therefore the angle between the two lines is
arctan(2) − arctan(−1) = arctan(2) + arctan(1).

6. Find f ′(0), f ′(1), and f ′(2) where f(x) = x(x − 1)2(x − 2)3.

Solution.

f ′(0) = lim
h→0

f(h) − f(0)
h

= lim
h→0

h(h − 1)2(h − 2)3 − 0
h

= lim
h→0

(h − 1)2(h − 2)3

= (0 − 1)2(0 − 2)3

= −8
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f ′(1) = lim
h→0

f(1 + h) − f(1)
h

= lim
h→0

(1 + h)h2(h − 1)3 − 0
h

= lim
h→0

h(1 + h)(h − 1)3

= 0

f ′(2) = lim
h→0

f(2 + h) − f(2)
h

= lim
h→0

(2 + h)(1 + h)2h3 − 0
h

= lim
h→0

(2 + h)(1 + h)2h2

= 0
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