
Computing derivatives

1 (Logarithmic differentiation). Differentiate

f (x)= xpx, g(x)=
√

x(x−1)
x−2

, h(x)= (cos x)sin x

2. Show that the function f (x)= xe−x2/2 satisfies the differential equation
xf ′(x)= (1− x2) f (x)

3 (Bonus). Calculate the 100th derivative of the function

x2 +1
x3 − x

Solution. Note that
x2 +1
x3 − x

= x2 +1
x(x−1)(x+1)

From last week, we know that reciprocals of linear functions are simple to
evaluate. Lets try to write this as a sum of such functions

x2 +1
x(x−1)(x+1)

= A
x
+ B

x−1
+ C

x+1
= (A+B+C)x2 + (B−C)x− A

x(x−1)(x+1)

so A, B, and C must satisfy 
A+B+C = 1
B−C = 0
−A = 1

Solving this system results in A =−1,B = C = 1. Thus

x2 +1
x3 − x

=−1
x
+ 1

x−1
+ 1

x+1
The nth derivative of these three are

dn

dxn

(
−1

x

)
= (−1)n+1n!

xn+1 ,
dn

dxn

(
1

x−1

)
= (−1)nn!

(x−1)n+1 ,
dn

dxn

(
1

x+1

)
= (−1)nn!

(x+1)n+1

Therefore the 100th derivative of the given function is

−100!
x101 + 100!

(x−1)101 + 100!
(x+1)101

4. Suppose f (x)= x5 +2x3 +7x−4. Find ( f −1)′(6).

Solution. We know that ( f −1)′(6)= f ′( f −1(6))−1. Note that

f (1)= 1+2+7−4= 6

so f −1(6)= 4. Moreover,

f ′(x)= 5x4 +6x2 +7

so f ′( f −1(6))−1 = 1/ f ′(4)= 1/(5 ·256+6 ·16+7).

5. Suppose that f is continuous and differentiable on [0,1]. You know, as
you demonstrated in the homework and the midterm, that there is a point
x ∈ [0,1] such that f (x)= x. Show that there is only one such point of f ′(t) 6= 1
for all 0≤ t ≤ 1.
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Optimization

6 (Geometrical optics). In the 17th century, the lawyer and mathematician
Pierre de Fermat observed that when light goes from point A to point B
it always takes the path of least time. Suppose that A and B lie in two
different media separated by a plane. The speed of light in these media is
v1 and v2 respectively. If θ1 is the angle of incidence, and θ2 is the angle of
refraction, show that v2 sinθ1 = v1 sinθ2

Solution. See Optical Demonstrations

7 (Regression). Suppose we have collected some data {(x1, y1), . . . , (xn, yn)}
from some experiment, and we want to find the line of best fit that passes
through the origin. That is, we want to find a function fβ(x)=βx, that best
fits our data. We measure the “fit” of this function by the mean squared
error:

E(β)=
n∑

i=1
(yi − fβ(xi))2.

find the value of β that minimizes E.

Solution. Lets say that the amount of error we incur from the ith data point
is L i = (yi −βxi)2, so E =∑

i L i. Since L′
i −2(yi −βxi)xi, we have that

E′ =∑
i

L′
i =−2

∑
i

(yi −βxi)xi =−2

(∑
i

xi yi −β
∑

i
x2

i

)

Therefore the optimal value β̂ must satisfy

E′(β̂)=−2

(∑
i

xi yi − β̂
∑

i
x2

i

)
= 0

will be given by

β̂=
∑

i xi yi∑
i x2

i

and this is indeed a global minimum since E′′(β̂)=∑
i x2

i > 0. Bonus: give a
geometric interpretation for the value β̂.

8 (Bonus, regression continued). Suppose we collect the data {x1, . . . , xn} from
repeated trials of the same experiment with measurement errors. We want
to report a single number x that best represents/fits this data. Find x if the
lack of fit is measured by (a) E(x)=∑n

i=1(xi − x)2 and (b) E(x)=∑n
i=1 |xi − x|.

Calculus isn’t going to help much with the second one.

9. Find the side lengths of the largest rectangle that can be inscribed in the
ellipse E : x2/a2 + y2/b2 = 1.

Solution. Let (x, y) ∈ E be the top-right vertex of the rectangle with width
2x and height 2y. The area, therefore, is A = 4xy. We wish to maximize
A subject to the constraint that (x, y) lies on the ellipse: x2/a2 + y2/b2 = 1.
Fortunately, since (x, y) is in the top-right quadrant of the plane, we can
solve for y as a function of x.

y= b
√

1− x2/a2 = b
a

√
a2 − x2
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which allows us to the area as a single-variable function of x,

A(x)= 4xy= 4b
a

x
√

a2 − x2

We have successfully reduced the problem to something we already know
how to do.

To optimize A, we have to find the value x that satisfies A′(x) = 0 and
A′′(x)< 0. Thus, (differentiation omitted)

A′(x)= 4b
a

a2 −2x2
p

a2 − x2
= 0, A′′(x)= 4bx(2x2 −3a2)

a(a2 − x2)3/2 < 0

From the first we can deduce that x = a/
p

2. Notice that since a > x, we
can say that 2x2 −3a2 < 0, (a2 − x2)3/2 > 0, and 4bx/a > 0, thus the second
derivative A′′(x)< as wanted. This shows that x = a/

p
2, y= b/

p
2 produce

the rectangle of largest area. The sidelengths, therefore, must be
p

2a,
p

2b.

Graphing

10. Sketch the graph of f (x)= 4x
1
3 + x

4
3 . Carefully indicate (1) domain, (2)

intercepts, (3) symmetry, (4) asymptotes, (5) derivatives, (6) critical points,
(7) points of inflection.

Solution. (1) The domain is obviously R.

(2) Intercepts. The only y-intercept is (0,0) For the x-intercepts:

0= 4x1/3 + x4/3 = x1/3(4+ x) =⇒ x = 0,−4.

Thus (−4,0) and (0,0).

(3) Symmetry. Note that

f (−x)= 4(−x)1/3 + (−x)4/3 =−4x1/3 + x4/3 6= f (x)

and also f (−x) 6= − f (x). So f is neither even nor odd.

(4) Asymptotes. There are obviously not vertical asymptotes Slant asymp-
totes:

f (x)
x

= 4x−2/3 + x1/3 →∞ (x →∞),

so none. Similarly, there are no horizontal asymptotes as f (x) → ±∞ as
x →±∞
(5) Derivatives.

f ′(x)= 4 · 1
3

x−2/3 + 4
3

x1/3 = 4+4x
3x2/3 = 4(x+1)

3x2/3 .

f ′′(x)= 4(x−2)
9x5/3 .
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(6) Critical points. Solve f ′(x)= 0:

4(x+1)= 0⇒ x =−1.

Also f ′(x) is undefined at x = 0, and 0 ∈Dom( f ). Thus the critical points are
x =−1 and x = 0.

7. Inflection Points. Solve f ′′(x)= 0:

x−2= 0⇒ x = 2.

f ′′(x) is undefined at x = 0, which must also be checked. Thus the candidates
are x = 0 and x = 2.

8. Sign Chart.

(−∞,−1) −1 (−1,0) 0 (0,2) 2 (2,∞)
f (x) ↗ min ↗ IP ↗ IP ↗
f ′(x) + 0 + DNE + +
f ′′(x) + + DNE − 0 +
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