More on the derivative

1. Find f'(0) if

$$f(x) = \begin{cases} g(x)\sin(1/x), & x \neq 0\\ 0, & x = 0 \end{cases}$$

and g(0) = g'(0) = 0.

Computing derivatives

- **2.** If f is differentiable at a, let d(x) = f(x) f'(a)(x a) f(a). Find d'(a).
- 3 (Logarithmic differentiation). Differentiate

$$f(x) = \sqrt[x]{x}, \quad g(x) = \sqrt{\frac{x(x-1)}{x-2}}, \quad h(x) = (\cos x)^{\sin x}$$

- **4.** Show that the function $f(x) = xe^{-x^2/2}$ satisfies the differential equation $xf'(x) = (1-x^2)f(x)$
- **5.** The radius of a sphere is increasing at a uniform rate of 5 cm/sec. At what rate are the area of the surface of the sphere and the volume of the sphere increasing when the radius becomes 50 cm.
- **6.** At what point of the curve $y^2 = 2x^3$ is the tangent perpendicular to the straight line 4x 3y + 2 = 0?
- **7.** Show that the hyperbolas $xy = a^2$ and $x^2 y^2 = b^2$ intersect at a right angle.
- **8.** Find the *n*th derivative of 1/x.
- **9** (Bonus). Calculate the 100th derivative of the function

$$\frac{x^2+1}{x^3-x}$$

10. A point M is in motion around the circle $x^2 + y^2 = a^2$ with constant angular velocity ω . Find the velocity and acceleration of the of the projection M_1 on the x-axis.

Significance of the derivative

- **11.** In the 17th century, the lawyer and mathematician Pierre de Fermat observed that when light goes from point A to point B it always takes the path of least time. Suppose that A and B lie in two different media separated by a plane. The speed of light in these media is v_1 and v_2 respectively. If θ_1 is the angle of incidence, and θ_2 is the angle of refraction, show that $v_2 \sin \theta_1 = v_1 \sin \theta_2$
- **12.** Show that for $0 \le x < y < 2\pi$ the inequality

$$|\sin x - \sin y| \le |x - y|$$

holds.

13. Suppose we have collected some data $\{(x_1,y_1),\ldots,(x_n,y_n)\}$ from some experiment, and we want to find the line of best fit that passes through the origin. That is, we want to find a function $f_{\lambda}(x) = \lambda x$ that best fits our data. We measure the "fit" of this function by the mean squared error:

$$E(\lambda) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_{\lambda}(x_i))^2.$$

find the value of λ that minimizes E.

14. Find the side lengths of the largest rectangle that can be inscribed in the ellipse $x^2/a^2 + y^2/b^2 = 1$.