The λ -Calculus

Kian Dianati

March 2, 2022

Alonzo Church

What is the λ -calculus?

A way to formally express computable functions. Kinda like a Turing machine.

Unlike in a Turing machine, you can "express"

functions in the λ -calculus.

So it's programming before programming

existed.

It is an alternative to Zermelo-Fraenkel Set Theory for the foundations of mathematics.

How to λ -calculus?

- Expressions
- ► Functions
- Applying expressions

 $\lambda xy.(\lambda f.x(yf))$

decleration \rightarrow

 λxy .

 $\lambda xy.(\lambda f.x(yf))$

decleration $\rightarrow \lambda xy$. expression $\rightarrow \lambda f.x(yf)$

$$(\lambda xy.x)(\lambda xy.y) =_{\alpha} (\lambda xy.x)(\lambda pq.q)$$

 $(\lambda xy.x)(\lambda xy.y) =_{\alpha} (\lambda xy.x)(\lambda pq.q)$

 $\rightarrow_{\beta} (\lambda xy.x)[(\lambda pq.q)/x]$

$$(\lambda xy.x)(\lambda xy.y) =_{\alpha} (\lambda xy.x)(\lambda pq.q)$$

 $\rightarrow_{\beta} (\lambda xy.x)[(\lambda pq.q)/x]$

 $\rightarrow_{\beta} \lambda pq.q$

And we can also name expressions, for easier writing.

Logic

 $\mathbf{t} = \lambda x y. x$ $\mathbf{f} = \lambda x y. y$

In **not**, we want the opposite of the input:

 $not = \lambda a.a$

In **not**, we want the opposite of the input:

 $not = \lambda a.af$

In **not**, we want the opposite of the input:

 $not = \lambda a.aft$

and = $\lambda ab.ab\mathbf{f}$

$\mathbf{and} = \lambda ab.ab\mathbf{f}$ $\mathbf{or} = \lambda ab.a\mathbf{t}b$

$\mathbf{and} = \lambda ab.ab\mathbf{f}$ $\mathbf{or} = \lambda ab.a\mathbf{t}b$

if = $\lambda cte.cte$

$$\mathbf{and} = \lambda ab.ab\mathbf{f}$$
$$\mathbf{or} = \lambda ab.a\mathbf{t}b$$

if = $\lambda cte.cte$

 $\rightarrow_{\beta} \lambda x.x$

(and true false)

(define true (lambda (x y) x))
(define false (lambda (x y) y))

#cedure false>

(define and (lambda (a b) (a b false)))

Numbers

In the λ -calculus we encode numbers using

higher order functions

$$\mathbf{o} = \lambda f x. x$$

$$\mathbf{o} = \lambda f x. x$$
$$\mathbf{i} = \lambda f x. f(x)$$

 $\mathbf{o} = \lambda f x. x$

 $\mathbf{I} = \lambda f x. f(x)$

 $\mathbf{z} = \lambda f x. f(f(x))$

 $\mathbf{o} = \lambda f x. x$

 $\mathbf{I} = \lambda f x. f(x)$

 $\mathbf{2} = \lambda f x. f(f(x))$

 $\mathbf{3} = \lambda f x. f(f(f(x)))$

 $\mathbf{o} = \lambda f x. x$

 $\mathbf{I} = \lambda f x. f(x)$

 $\mathbf{2} = \lambda f x. f(f(x))$

 $\mathbf{n} =_{\alpha} \lambda f x. f^{n}(x)$

 $\mathbf{3} = \lambda f x. f(f(f(x)))$

To $m \times n$:

To $m \times n$:

$$\lambda f x. f^n(x)$$

To $m \times n$:

$$\lambda f x. f^n(x)$$

To $m \times n$:

$$10 m \times n$$
.

 $\lambda fx.(f^m)^n(x)$

nm

$\mathbf{nm} =_{\alpha} (\lambda f x. f^{n}(x))(\lambda pq. p^{m}(q))$

$$\mathbf{nm} =_{\alpha} (\lambda f x. f^{n}(x))(\lambda pq. p^{m}(q))$$

 $\mathbf{nm} =_{\alpha} (\lambda f x. f^{n}(x))(\lambda p q. p^{m}(q))$

 $\rightarrow_{\beta} \lambda x.(\lambda pq.p^m(q))^n(x)$

 $\mathbf{nm} =_{\alpha} (\lambda f x. f^{n}(x))(\lambda p q. p^{m}(q))$

 $\rightarrow_{\beta} \lambda x.(\lambda pq.p^m(q))^n(x)$

 $\rightarrow_{\beta} \lambda xq.(x^m)^n(q)$

 $\mathbf{nm} =_{\alpha} (\lambda f x. f^{n}(x))(\lambda p q. p^{m}(q))$

 $\rightarrow_{\beta} \lambda x.(\lambda pq.p^{m}(q))^{n}(x)$

 $\rightarrow_{\beta} \lambda xq.(x^m)^n(q)$

 $\rightarrow_{\beta} \lambda xq.x^{nm}(q)$

Two interesting things to think about.

RR

$$\mathcal{L}(\mathcal{L}(\mathcal{L}(\mathcal{L}))) = \mathcal{L}(\mathcal{L}(\mathcal{L}(\mathcal{L})))$$

 $\mathbf{RR} \to_{\beta} \lambda x.\mathbf{not}(xx)[\mathbf{R}/\mathbf{x}]$

$$\operatorname{Re}(\lambda x.\operatorname{Hot}(xx) - \mathbf{K})$$

 $\mathbf{RR} \to_{\beta} \lambda x.\mathbf{not}(xx)[\mathbf{R}/\mathbf{x}]$

 $\rightarrow_{\beta} not(RR)$

$$\mathbf{Y} = \lambda f x. (\lambda x. f(xx)) (\lambda x. f(xx))$$

And so $\mathbf{Y}g \to_{\beta} g(g(g(\ldots)))$

Could this mean transfinite cardinals in the λ-calculus?

Thanks for listening!