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What is the A-calculus?



A way to formally express computable
functions. Kinda like a Turing machine.



Unlike in a Turing machine, you can “express”
functions in the A-calculus.



So it’s programming before programming
existed.



It is an alternative to Zermelo-Fraenkel Set
Theory for the foundations of mathematics.



How to A-calculus?



> Expressions
» Functions

> Applying expressions



Axy.(Af x(yf )



Axy.(Af x(yf )

decleration — Axy.



Axy. (Afx(yf))

decleration —  Axy.

expression — lf x()’f )



(Axy.x) (Axy.y)



(Axy.x) (Axy.y) =, (Axy.x) (Apg.q)



(Axy.x) (Axy.y) =, (Axy.x) (Apg.q)
—p (Axy.x) [(Apg.q) /x]



(Axy.x) (Axy.y) =, (Axy.x) (Apg.q)
—g (Axy.x) [(Apg.q) /x]
¢ Apq.q



And we can also name expressions, for easier
writing.



Logic



t = Axy.x
f =Axy.y



In not, we want the opposite of the input:

not = la.a



In not, we want the opposite of the input:

not = la.af



In not, we want the opposite of the input:

not = la.aft



and = lab.abf



and = lab.abf
or = lab.ath



and = lab.abf
or = lab.ath
if = Acte.cte



and = lab.abf
or = lab.ath
if = Acte.cte

—p AX.X



(define true (lambda (x y) x))
(define false (lambda (x y) y))
(define and (lambda (a b) (a b false)))

(and true false)
#<procedure false>



Numbers



In the A-calculus we encode numbers using
higher order functions



0 = Afx.x



0 = Afx.x
I = Afx.f(x)



= lfxx(x)
T
I = Afx.
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nm =, (4fx./"(x)) (Apg.p" (9))



nm =, (Afx.f"(x))(Apg.p"(q))
s 2" () Dpg " @I



nm =, (Afx.f"(x))(Apg.p"(q))
s 2" () Dpg " @I
— g Ax.(Apg.p™ (9))" (x)



nm =, (Afx.f"(x))(Apq.p" (9))
e 2 W g ]
—g Ax.(Apg.p™ (q))” (x)
—g Axg.(x™)"(q)



nm =, (Afx.f"(x))(Apg.p" (q))
e 2 W g ]
—g Ax.(Apg.p™ (q))” (x)
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— g Axg.x"" (q)



Two interesting things to think
about.



Let Ax.not(xx) = R



Let Ax.not(xx) = R

RR



Let Ax.not(xx) = R

RR —; Ax.not(xx) [R/x]



Let Ax.not(xx) = R

RR —; Ax.not(xx) [R/x]
—8 not(RR)



Y = Afx. (Ax.f (xx)) (Ax.f (xx))



Andso Yg —p g(g(g(...)))



Could this mean transfinite cardinals in the
A-calculus?



Thanks for listening!



