The A-Calculus

Kian Dianati

March 2, 2022

Alonzo Church

What is the A-calculus?

A way to formally express computable
functions. Kinda like a Turing machine.

Unlike in a Turing machine, you can “express”
functions in the A-calculus.

So it’s programming before programming
existed.

It is an alternative to Zermelo-Fraenkel Set
Theory for the foundations of mathematics.

How to A-calculus?

> Expressions
» Functions

> Applying expressions

Axy.(Af x(yf)

Axy.(Af x(yf)

decleration — Axy.

Axy. (Afx(yf))

decleration — Axy.

expression — lf x()’f)

(Axy.x) (Axy.y)

(Axy.x) (Axy.y) =, (Axy.x) (Apg.q)

(Axy.x) (Axy.y) =, (Axy.x) (Apg.q)
—p (Axy.x) [(Apg.q) /x]

(Axy.x) (Axy.y) =, (Axy.x) (Apg.q)
—g (Axy.x) [(Apg.q) /x]
¢ Apq.q

And we can also name expressions, for easier
writing.

Logic

t = Axy.x
f =Axy.y

In not, we want the opposite of the input:

not = la.a

In not, we want the opposite of the input:

not = la.af

In not, we want the opposite of the input:

not = la.aft

and = lab.abf

and = lab.abf
or = lab.ath

and = lab.abf
or = lab.ath
if = Acte.cte

and = lab.abf
or = lab.ath
if = Acte.cte

—p AX.X

(define true (lambda (x y) x))
(define false (lambda (x y) y))
(define and (lambda (a b) (a b false)))

(and true false)
#<procedure false>

Numbers

In the A-calculus we encode numbers using
higher order functions

0 = Afx.x

0 = Afx.x
I = Afx.f(x)

= lfxx(x)
T
I = Afx.

Afx.x)
= gfx.fif <x>(l)))
i : Afx.
3=

Afx.x)
= gfx.fif <x>(l)))
i : Afx.
3=

| ff (
n a

Tom X n:

Tom X n:

Afx.f" (x)

Tom X n:

2 f" (x)
l

To m X n:
M f" ()
l
Afe. ()" (x)

nm

nm =, (4fx./"(x)) (Apg.p" (9))

nm =, (Afx.f"(x))(Apg.p"(q))
s 2" () Dpg " @I

nm =, (Afx.f"(x))(Apg.p"(q))
s 2" () Dpg " @I
— g Ax.(Apg.p™ (9))" (x)

nm =, (Afx.f"(x))(Apq.p" (9))
e 2 W g]
—g Ax.(Apg.p™ (q))” (x)
—g Axg.(x™)"(q)

nm =, (Afx.f"(x))(Apg.p" (q))
e 2 W g]
—g Ax.(Apg.p™ (q))” (x)
—g Axg.(x™)"(q)
— g Axg.x"" (q)

Two interesting things to think
about.

Let Ax.not(xx) = R

Let Ax.not(xx) = R

RR

Let Ax.not(xx) = R

RR —; Ax.not(xx) [R/x]

Let Ax.not(xx) = R

RR —; Ax.not(xx) [R/x]
—8 not(RR)

Y = Afx. (Ax.f (xx)) (Ax.f (xx))

Andso Yg —p g(g(g(...)))

Could this mean transfinite cardinals in the
A-calculus?

Thanks for listening!

