
λ Calculus

Abstract
This series of notes is intended as an introduction to the λ- calculus.

But it is most likely a series of ramblings as I go about learning it as I

intend to include all of my explorations in it as well. For example, I go

over implementing a simple evaluator (and perhaps a better one later

for practical use). This is a more revised and complete edition of my

notes for the Math+ mentorship program hosted by the University

of Toronto. With a special thanks to my mentor, Luke, and to Peter

Selinger whose book on the topic is the source of much of this series.

Introduction
Syntax
The λ-calculus has a formal syntax which can be described using the

following definitions. The first one is easier to understand but we might

use the second one later.

Definition 1. Given an infinite set, V , of variables, and let Λ be the set
of all λ-expressions. Then:

• For x ∈ V , then x ∈ Λ

• For M,N ∈ Λ then (MN) ∈ Λ

• For x ∈ V , and M ∈ Λ, then λx.M ∈ Λ

Definition 2. Given an infinite setV of variables. The set of all λ-terms,
Λ, is given by the following BNF:

M,N ::= x | (MN) | λx.M

These might be too difficult to understand. So I will attempt to

describe them in words. There are three kinds of λ-expressions.

1

1. Variables. The set V in the pervious definitions. For example x,

y, etc.

2. Combinators/Functions. A function, it takes an input and returns

some value based on it. Denoted by λ[args].[expr]. For example

λx.x.

3. Applications. Applying two λ expressions to eachother. Denoted

by MN . For example (λx.x) (λy.y).

Evaluation
Before we can get to any of the interesting aspects of the λ-calculus,

we must learn how to evaluate λ-expressions. We’ll go over that in

this section and — by taking a page out of Gerald Sussman’s book—

implement an evaluator to do these for us.

α-equivalence
We wish to see whether two λ-terms are equal or not. In traditional

mathematics we might say that two functions with identical domains

and codomains are equal. However in the λ-calculus we have no such

concepts. So we have to compare the rules by which our input is ma-

nipulated into our desired output. If this is identical in two λ-terms,

then we can say that they are equal. Let such an operator be called

α-equivalence.

Definition 3. An occurance of a variable, x, in λx.N is said to be bound.
And the corresponding λx is called a binder. A variable that’s not bound
is called free. The set of all free variables of a term is defined as below:

• FV (x) = {x},
• FV (MN) = FV (M) ∪ FV (N),
• FV (λx.M) = FV (M) \ {x}

2

If we attempt to formally define this concept, we quickly reach a

problem. λx.x and λy.y are clearly expressing the same rule. Which is to

say that they only differ in their bound variable. Informally we may call

two λ-terms that only differ in their bound variables to be α-equivalent.

This too, is hard to define formally. We need a renaming operation to

account for differing bound variables. Such an operation is defined as

follows.

Definition 4. For some variables x and y, and a term M. M{y/x}–
renaming x as y– is as follows:

• x{y/x} ≡ y
• z{y/x} ≡ z if x ≠ z
• (MN){y/x} ≡ (M{y/x})(N {y/x})
• (λx.M){y/x} ≡ λz.(M{y/x}) if x ≠ z

Now we are fully capable of defining α-equivalence. The following

is essentially a formal writing of our previous definition.

Definition 5. α-equivalence is the smallest conguent relation =α on λ-
terms, such that for all terms M and all variables y ∉ M,

λx.M =α λy.(M{y/x})

β-reduction
In the previous section, we defined a renaming operation to replace a

variable in a λ-term. Which in turn allowed us to define what it means

for two λ-terms to be equal to one another. In this section we wish to

discuss how we might simplify λ-expressions. Lets call this β-reduction.

In normal mathematics, evaluating f (x) = x2 at x = a is quite

simple. You substitute all instances of x with a and calculate the results.

Unlike last time, this works in the λ-calculus as well. So before we can

3

formally define β-reduction, we must first define substitution, which

allows us to replace a variable by a λ-term. There are two problems with

defining such an operation.

1. We should only replace free variables. The names of bound vari-

ables are out of our scope and should not be changed. For exam-

ple x(λxy.x) [N/x] is N (λxy.x) and not N (λxy.N)
2. We need to avoid unintended “capture” of free variables. For

example, let M ≡ λx.yx and N ≡ λz.xz. Note that x is free in

N but bound in M. If we do M [N/y] naively we get λx.Nx =
λx.(λz.xz)x. However, since x is bound only to M, the x in M
and the x in N are not the same. So we must rename the bound

variables before the substitution.

M [N/y] = (λx′.yx′) [N/y] = λx′.Nx′ = λx′.(λz.xz)x′

Definition 6. The substitution of N for free occurances of x in M, in
symbols M [N/x], is defined as follows:

• x[N/x] ≡ N
• y[N/x] ≡ y if x ≠ y
• (MP) [N/x] ≡ (M [N/x]) (P [N/x])
• (λx.M) [N/x] ≡ λx.M
• (λy.M) [N/x] ≡ λy.(M [N/x]) if x ≠ y andy ∉ FV (N)
• (λy.M) [N/x] ≡ λy′.(M{y′/y}[N/x]) if x ≠ y, y ∉ FV (N)

and y′ is fresh

A term of the form (λx.M)N is called a β-redex. It reduces to

M [N/x], which is called the reduct. A λ-term without any β-redexs is

4

in β-normal form. For example:

(λx.y) ((λz.zz) (λw.w)) →β (λx.y) ((λw.w) (λw.w)
→β (λx.y) (λw.w)
→β y

And since y has no redexes it is in normal form. We could’ve also just

looked at λx.y and realized that all the arguments are uselss. The key

take aways are (1) reducing a redex can create new redexes, (2) reducing

a redex can delete some other redexes, (3) the number of steps can vary.

However, not all terms evaluate to a normal form. Some can just keep

reducing forever without reaching a normal form.

IfM andM′
are terms such thatM ↠β M′

and ifM′
is in normal

form we say thatM evaluates toM′
. Now we are able to formally define

β-reduction.

Definition 7. We define single-step β-reduction to be the smallest rela-
tion →β on terms satisfying:

(β) (λx.M) →β M [N/x]

(cong
1
)

M →β M′

MN →β M′N

(ζ)
M →β M′

λx.M →β λx.M′

(cong
2
)

N →β N ′

MN →β MN ′

Definition 8. We write M ↠β M′ if M reduces to M′ in zero or more

5

steps. Formally,↠β is defined to be the reflexive transitive closure of →β,
i.e., the smallest reflexive transitive relation containing →β.

And by allowing →β to be symmetric, we can define β-equivalence.

Definition 9. We write M =β M′ if M can be transformed into M′

by zero or more reduction steps and/or inverse reduction steps. Formally.
=β is defined to be the reflec symmetric transitive closure of →β.

Reperesenting Data
This chapter is an outline of how you might represent data in the λ-

calculus. Two types, booleans and the natural numbers are presented

here. For more, check the appendices.

booleans

Booleans are quite simple to implement in the λ-calculus. We want to

find “switches” in the λ-calculus. Functions that can only be in two

states. For example, function that takes two arguments, must either

return the first, or the second. So let’s define T = λxy.x and F = λxy.y.

Using these simple definition we can build our familiar logic gates.

For example, the not function reverses it’s input. And since we can pick

what we return using T and F, it is quite easy to define not.

not = λa.aFT

a is either T, or F. If a is T, then we want to let our first argument to

a be F (since F is the inverse of T). And if a is equal to F , our second

argument should be T.

Exercise 1. Find and, or functions that work with our representation of
booleans.

6

Exercise 2. Find an alternative encoding for booleans. Find the corre-
sponding logic gates.

Exercise 3. Implement three-valued logic 1 in the λ-calculus.

natural numbers

The implementation of the natural numbers is very similar to the peano

axioms. It is merely the application of a function multiple times.

Definition 10. A number, n ∈ N, is represented in the λ-calculus as a
function that applies it’s first argument n times to the next. Such numbers
are called Church Numerals. For example:

0 = λso.s
1 = λso.so
2 = λso.s(so)
3 = λso.s(s(so))
4 = λso.s(s(s(so))
n = λso.sn(o)

We can also define a “f (x) = x+1” function. Also called a successor

function. Remember that adding one is the samething as applying s to

o one more time in λso.sn(o).

Theorem 1 (Successor Function). Let S = λfmx.m(fmx). For all
Church numerals N = λso.sn(o), SN = λso.sn+1(o).

1
Logic with three values instead of two.

7

https://en.wikipedia.org/wiki/Three-valued_logic

Proof. This is a simple induction proof. Our base case is (λfmx.m(fmx)) (λso.o) →β
λmx.m((λso.o)mx) →β λmx.mx which is equal to 1. Then our induc-

tive step is:

(λfmx.m(fmx)) (λso.sn(o)) →β λmx.m((λso.sn(o))mx)
→β λmx.m(mn(x))
↠β λmx.mn+1(x)

Q.E.D.

Exercise 4. (a) Proveλnmfx.nf (mfx) is addition. (b) Prove thatMN ↠β
M ×N . (c) Prove that λnmf.n(mf) is multiplication.

Let’s also cover how we might use booleans in combination with

church numerals. For example, let’s define a function that will return

T if it’s input is 0.

Theorem 2. The function zero? = λnxy.n(λx.y)x will return T iff
n = λso.o.

Proof. The key here is to realize that if n is λso.o, then it will ignore λx.y
and return λxy.x which is what we want. However if x is not 0, it will

apply λx.y to x a number of times, which won’t matter because λx.y
returns y regardless of it’s argument. Meaning that the output of the

whole function would be λxy.y which is also what we want. Q.E.D.

Exercise 5. Prove theorem 2 inductively.

Exercise 6. Create an equality combinator that will return T iff it’s
two arguments are equal Church numerals. And F if otherwise.

8

Exercise 7. (a) Implement a pair data structure in the λ-calculus with
functions to retrieve each element of the pair. (b) Implement the inte-
gers in the λ-calculus along with the appropriate functions (+, −, etc...)
(c) Implement the rationals in the λ-calculus along with all apropriate
functions.

Solution. (a) Our pair data structure is: pair = λpqc.cpq. To re-

trieve the first element, we can use the fst function: fst = λp.pT
and we can use the snd function to retrieve the second element:

snd = λp.pF.

(b) Integers are simply signed naturals. Therefore we will use a pair

to represent them. int = λsn.(pair sn). Where s is the sign and

n is a natural number.

(c) Rationals are defined as

{
p
q | ∀p, q ∈ Z

}
. and so we can represent

them as pairs. rat = λnd.(pair nd). Where n is the numerator

and d is the denominator.

Q.E.D.

Fixed Points and Recursion
Definition 11. A fixed-point, is some x, such that f (x) = x. In λ-
calculus notation, this would be FX =α X .

Theorem 3 (Turing Fixed-Point Combinator). In the untypedλ-calculus,
every term, F , has a fixed point.

Proof. Let A = λxy.y(xxy), and define Θ = AA. Suppose F is any

9

λ-term, and let N = AAF = ΘF . Therefore:

N = ΘF
= (λxy.y(xxy))AF
↠β F (AAF)
= FN

Θ is known as the Turing Fixed Point Combinator. Q.E.D.

Fixed points are rather powerful tools. Finding a fixed point is

equivalent to solving the equation x = f (x). And since we can do it

with any function, we can solve the stated equation for all λ-terms. For

example, the factorial function is usually defined recursively as follows:

factorial(0) = 1

factorial(n) = n × factorial(n − 1)

The equivalent λ-term would then be

fact = λn.if (zero? n) 1 (∗ n (fact(pred n)))

However, since fact is defined in terms of itself, we don’t really know

what it really is. So we can use the fixed-point combinator to deduce it.

Notice that:

fact = (λfn.if (zero? n) 1 (∗ n (f (pred n))fact

Meaning that fact is a fixed-point of (λfn.if (zero?n) 1 (∗n (f (predn)),

or in other words, fact = Θ(λfn.if (zero? n) 1 (∗ n (f (pred n))

Exercise 8. Implement the fibonacci numbers in the λ-calculus. They
are defined as follows: F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2.

10

Solution. As we have done before, we can write an equation for fib in

terms of itself, then we can use the Turing combinator to solve for fib.

fib = λn.if (zero? n)0(if (zero?(pred n))1
(+(fib(pred n)) (fib(pred (pred n)))))

And solving for fib gives us

Θ(λn.if (zero? n)0(if (zero?(pred n))1
(+(f (pred n)) (f (pred (pred n))))))

Q.E.D.

Exercise 9. Implement a test for primality in the λ-calculus. Including
any functions not yet defined.

11

	Abstract
	Introduction
	Syntax
	Evaluation
	-Equivalence
	-Reduction

	Reperesenting Data
	Booleans
	Natural Numbers

	Fixed Points and Recursion

