λ Calculus

Abstract

This series of notes is intended as an introduction to the λ - calculus. But it is most likely a series of ramblings as I go about learning it as I intend to include all of my explorations in it as well. For example, I go over implementing a simple evaluator (and perhaps a better one later for practical use). This is a more revised and complete edition of my notes for the Math+ mentorship program hosted by the University of Toronto. With a special thanks to my mentor, Luke, and to Peter Selinger whose book on the topic is the source of much of this series.

Introduction

Syntax

The λ -calculus has a formal syntax which can be described using the following definitions. The first one is easier to understand but we might use the second one later.

Definition 1. Given an infinite set, V, of variables, and let Λ be the set of all λ -expressions. Then:

- For $x \in V$, then $x \in \Lambda$
- For $M, N \in \Lambda$ then $(MN) \in \Lambda$
- For $x \in V$, and $M \in \Lambda$, then $\lambda x.M \in \Lambda$

Definition 2. Given an infinite set V of variables. The set of all λ -terms, Λ , is given by the following BNF:

$$\mathcal{M}, \mathcal{N} ::= x \mid (\mathcal{M}\mathcal{N}) \mid \lambda x.\mathcal{M}$$

These might be too difficult to understand. So I will attempt to describe them in words. There are three kinds of λ -expressions.

- 1. *Variables.* The set *V* in the pervious definitions. For example *x*, *y*, etc.
- 2. *Combinators/Functions.* A function, it takes an input and returns some value based on it. Denoted by λ [args].[expr]. For example $\lambda x.x.$
- 3. *Applications*. Applying two λ expressions to eachother. Denoted by *MN*. For example $(\lambda x.x)(\lambda y.y)$.

Evaluation

Before we can get to any of the interesting aspects of the λ -calculus, we must learn how to evaluate λ -expressions. We'll go over that in this section and — by taking a page out of Gerald Sussman's book—implement an evaluator to do these for us.

α -equivalence

We wish to see whether two λ -terms are equal or not. In traditional mathematics we might say that two functions with identical domains and codomains are equal. However in the λ -calculus we have no such concepts. So we have to compare the rules by which our input is manipulated into our desired output. If this is identical in two λ -terms, then we can say that they are equal. Let such an operator be called α -equivalence.

Definition 3. An occurance of a variable, x, in λx . N is said to be bound. And the corresponding λx is called a binder. A variable that's not bound is called free. The set of all free variables of a term is defined as below:

- $FV(x) = \{x\},\$
- $FV(MN) = FV(M) \cup FV(N)$,
- $FV(\lambda x.M) = FV(M) \setminus \{x\}$

If we attempt to formally define this concept, we quickly reach a problem. $\lambda x.x$ and $\lambda y.y$ are clearly expressing the same rule. Which is to say that they only differ in their bound variable. Informally we may call two λ -terms that only differ in their bound variables to be α -equivalent. This too, is hard to define formally. We need a *renaming* operation to account for differing bound variables. Such an operation is defined as follows.

Definition 4. For some variables x and y, and a term M. $M\{y/x\}$ -renaming x as y- is as follows:

- $x\{y/x\} \equiv y$
- $z\{y/x\} \equiv z \ if x \neq z$
- $(MN)\{y/x\} \equiv (M\{y/x\})(N\{y/x\})$
- $(\lambda x.M)\{y/x\} \equiv \lambda z.(M\{y/x\}) if x \neq z$

Now we are fully capable of defining α -equivalence. The following is essentially a formal writing of our previous definition.

Definition 5. α -equivalence is the smallest conguent relation $=_{\alpha}$ on λ -terms, such that for all terms M and all variables $y \notin M$,

$$\lambda x.M =_{\alpha} \lambda y.(M\{y/x\})$$

β -reduction

In the previous section, we defined a renaming operation to replace a variable in a λ -term. Which in turn allowed us to define what it means for two λ -terms to be equal to one another. In this section we wish to discuss how we might simplify λ -expressions. Lets call this β -reduction.

In normal mathematics, evaluating $f(x) = x^2$ at x = a is quite simple. You substitute all instances of x with a and calculate the results. Unlike last time, this works in the λ -calculus as well. So before we can formally define β -reduction, we must first define substitution, which allows us to replace a variable by a λ -term. There are two problems with defining such an operation.

- 1. We should only replace *free* variables. The names of bound variables are out of our scope and should not be changed. For example $x(\lambda xy.x)[N/x]$ is $N(\lambda xy.x)$ and not $N(\lambda xy.N)$
- 2. We need to avoid unintended "capture" of free variables. For example, let $M \equiv \lambda x.yx$ and $N \equiv \lambda z.xz$. Note that x is free in N but bound in M. If we do M[N/y] naively we get $\lambda x.Nx = \lambda x.(\lambda z.xz)x$. However, since x is bound only to M, the x in M and the x in N are not the same. So we must rename the bound variables before the substitution.

$$\mathcal{M}[N/y] = (\lambda x'.yx')[N/y] = \lambda x'.Nx' = \lambda x'.(\lambda z.xz)x'$$

Definition 6. The substitution of N for free occurances of x in M, in symbols M[N/x], is defined as follows:

- $x[N/x] \equiv N$
- $y[N/x] \equiv y \ if x \neq y$
- $(MP)[N/x] \equiv (M[N/x])(P[N/x])$
- $(\lambda x.M)[N/x] \equiv \lambda x.M$
- $(\lambda y.M)[N/x] \equiv \lambda y.(M[N/x]) \text{ if } x \neq y \text{ and } y \notin FV(N)$
- $(\lambda y.M)[N/x] \equiv \lambda y'.(M\{y'/y\}[N/x]) \text{ if } x \neq y, y \notin FV(N)$ and y' is fresh

A term of the form $(\lambda x.M)N$ is called a β -redex. It reduces to M[N/x], which is called the *reduct*. A λ -term without any β -redexs is

in β -normal form. For example:

$$(\lambda x.y)((\lambda z.zz)(\lambda w.w)) \rightarrow_{\beta} (\lambda x.y)((\lambda w.w)(\lambda w.w))$$
$$\rightarrow_{\beta} (\lambda x.y)(\lambda w.w)$$
$$\rightarrow_{\beta} y$$

And since y has no redexes it is in normal form. We could've also just looked at $\lambda x. y$ and realized that all the arguments are uselss. The key take aways are (1) reducing a redex can create new redexes, (2) reducing a redex can delete some other redexes, (3) the number of steps can vary. However, not all terms evaluate to a normal form. Some can just keep reducing forever without reaching a normal form.

If M and M' are terms such that $M \twoheadrightarrow_{\beta} M'$ and if M' is in normal form we say that M evaluates to M'. Now we are able to formally define β -reduction.

Definition 7. We define single-step β -reduction to be the smallest relation \rightarrow_{β} on terms satisfying:

(β)	$\overline{(\lambda x.M) \to_{\beta} M[N/x]}$
$(cong_1)$	$M \to_{\beta} M'$
	$\overline{MN \to_{\beta} M'N}$
(ζ)	$M \to_{\beta} M'$
	$\overline{\lambda x.M} \to_{\beta} \lambda x.M'$
(cong ₂)	$N \to_{\beta} N'$
	$\overline{MN \to_{\beta} MN'}$

Definition 8. We write $M \twoheadrightarrow_{\beta} M'$ if M reduces to M' in zero or more

steps. Formally, $\twoheadrightarrow_{\beta}$ is defined to be the reflexive transitive closure of \rightarrow_{β} , *i.e.*, the smallest reflexive transitive relation containing \rightarrow_{β} .

And by allowing \rightarrow_{β} to be symmetric, we can define β -equivalence.

Definition 9. We write $M =_{\beta} M'$ if M can be transformed into M' by zero or more reduction steps and/or inverse reduction steps. Formally. = $_{\beta}$ is defined to be the reflec symmetric transitive closure of \rightarrow_{β} .

Reperesenting Data

This chapter is an outline of how you might represent data in the λ -calculus. Two types, booleans and the natural numbers are presented here. For more, check the appendices.

BOOLEANS

Booleans are quite simple to implement in the λ -calculus. We want to find "switches" in the λ -calculus. Functions that can only be in two states. For example, function that takes two arguments, must either return the first, or the second. So let's define $\mathbf{T} = \lambda xy.x$ and $\mathbf{F} = \lambda xy.y$.

Using these simple definition we can build our familiar logic gates. For example, the not function reverses it's input. And since we can pick what we return using \mathbf{T} and \mathbf{F} , it is quite easy to define not.

not = $\lambda a.a$ **FT**

a is either **T**, or **F**. If *a* is **T**, then we want to let our first argument to *a* be **F** (since **F** is the inverse of **T**). And if *a* is equal to *F*, our second argument should be **T**.

Exercise 1. Find **and**, **or** functions that work with our representation of booleans.

Exercise 2. Find an alternative encoding for booleans. Find the corresponding logic gates.

Exercise 3. Implement three-valued logic ¹ in the λ -calculus.

NATURAL NUMBERS

The implementation of the natural numbers is very similar to the peano axioms. It is merely the application of a function multiple times.

Definition 10. A number, $n \in \mathbb{N}$, is represented in the λ -calculus as a function that applies it's first argument n times to the next. Such numbers are called **Church Numerals**. For example:

$$0 = \lambda so.s$$

$$1 = \lambda so.so$$

$$2 = \lambda so.s(so)$$

$$3 = \lambda so.s(s(so))$$

$$4 = \lambda so.s(s(so))$$

$$n = \lambda so.s^{n}(o)$$

We can also define a "f(x) = x+1" function. Also called a successor function. Remember that adding one is the samething as applying *s* to *o* one more time in $\lambda so.s^n(o)$.

Theorem 1 (Successor Function). Let $S = \lambda fmx.m(fmx)$. For all Church numerals $N = \lambda so.s^n(o)$, $SN = \lambda so.s^{n+1}(o)$.

¹Logic with three values instead of two.

Proof. This is a simple induction proof. Our base case is $(\lambda fmx.m(fmx))(\lambda \lambda mx.m((\lambda so.o)mx) \rightarrow_{\beta} \lambda mx.mx$ which is equal to 1. Then our inductive step is:

$$\begin{aligned} (\lambda fmx.m(fmx))(\lambda so.s^{n}(o)) &\to_{\beta} \lambda mx.m((\lambda so.s^{n}(o))mx) \\ &\to_{\beta} \lambda mx.m(m^{n}(x)) \\ &\twoheadrightarrow_{\beta} \lambda mx.m^{n+1}(x) \end{aligned}$$

Q.E.D.

Exercise 4. (a) Prove $\lambda nmfx.nf(mfx)$ is addition. (b) Prove that $MN \rightarrow_{\beta} M \times N$. (c) Prove that $\lambda nmf.n(mf)$ is multiplication.

Let's also cover how we might use booleans in combination with church numerals. For example, let's define a function that will return T if it's input is 0.

Theorem 2. The function zero? = $\lambda nxy.n(\lambda x.y)x$ will return **T** iff $n = \lambda so.o.$

Proof. The key here is to realize that if *n* is λ *so.o*, then it will ignore $\lambda x.y$ and return $\lambda xy.x$ which is what we want. However if *x* is not o, it will apply $\lambda x.y$ to *x* a number of times, which won't matter because $\lambda x.y$ returns *y* regardless of it's argument. Meaning that the output of the whole function would be $\lambda xy.y$ which is also what we want. Q.E.D.

Exercise 5. *Prove theorem 2 inductively.*

Exercise 6. Create an equality combinator that will return T iff it's two arguments are equal Church numerals. And F if otherwise.

Exercise 7. (a) Implement a pair data structure in the λ -calculus with functions to retrieve each element of the pair. (b) Implement the integers in the λ -calculus along with the appropriate functions (+, -, etc...) (c) Implement the rationals in the λ -calculus along with all apropriate functions.

- Solution. (a) Our **pair** data structure is: **pair** = $\lambda pqc.cpq$. To retrieve the first element, we can use the **fst** function: **fst** = $\lambda p.p$ **T** and we can use the **snd** function to retrieve the second element: **snd** = $\lambda p.p$ **F**.
 - (b) Integers are simply signed naturals. Therefore we will use a pair to represent them. **int** = $\lambda sn.$ (**pair** sn). Where s is the sign and n is a natural number.
 - (c) Rationals are defined as $\left\{\frac{p}{q} \mid \forall p, q \in \mathbb{Z}\right\}$. and so we can represent them as pairs. **rat** = λnd . (**pair** nd). Where n is the numerator and d is the denominator.

Q.E.D.

Fixed Points and Recursion

Definition II. A *fixed-point*, is some x, such that f(x) = x. In λ -calculus notation, this would be $FX =_{\alpha} X$.

Theorem 3 (Turing Fixed-Point Combinator). *In the untyped* λ *-calculus, every term, F, has a fixed point.*

Proof. Let $A = \lambda xy.y(xxy)$, and define $\Theta = AA$. Suppose F is any

 λ -term, and let $N = AAF = \Theta F$. Therefore:

$$N = \Theta F$$

= $(\lambda xy.y(xxy))AF$
 $\rightarrow_{\beta} F(AAF)$
= FN

 Θ is known as the *Turing Fixed Point Combinator*. Q.E.D.

Fixed points are rather powerful tools. Finding a fixed point is equivalent to solving the equation x = f(x). And since we can do it with any function, we can solve the stated equation for all λ -terms. For example, the factorial function is usually defined recursively as follows:

$$factorial(0) = 1$$
$$factorial(n) = n \times factorial(n-1)$$

The equivalent λ -term would then be

fact =
$$\lambda n.if(\text{zero? } n) 1 (* n (\text{fact}(\text{pred } n)))$$

However, since fact is defined in terms of itself, we don't really know what it *really* is. So we can use the fixed-point combinator to deduce it. Notice that:

$$fact = (\lambda fn.if(zero? n) 1 (* n (f(pred n)) fact$$

Meaning that fact is a fixed-point of $(\lambda fn.\mathbf{if}(\mathbf{zero}; n) 1 (*n (f(\mathbf{pred} n))))$, or in other words, $\mathbf{fact} = \Theta(\lambda fn.\mathbf{if}(\mathbf{zero}; n) 1 (*n (f(\mathbf{pred} n))))$

Exercise 8. Implement the fibonacci numbers in the λ -calculus. They are defined as follows: $F_0 = 0$, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$.

Solution. As we have done before, we can write an equation for **fib** in terms of itself, then we can use the Turing combinator to solve for **fib**.

$$\mathbf{fib} = \lambda n.\mathbf{if}(\mathbf{zero}? n)0(\mathbf{if}(\mathbf{zero}?(\mathbf{pred}\ n))1 \\ (+(\mathbf{fib}(\mathbf{pred}\ n))(\mathbf{fib}(\mathbf{pred}\ (\mathbf{pred}\ n)))))$$

And solving for **fib** gives us

 $\Theta(\lambda n.if(\text{zero}? n)0(if(\text{zero}?(\text{pred } n))1 \\ (+(f(\text{pred } n))(f(\text{pred } (\text{pred } n)))))$

Q.E.D.

Exercise 9. Implement a test for primality in the λ -calculus. Including any functions not yet defined.