
The Curse
of

Monte Carlo
They attributed this hasty wedding to the Prince’s dread of

seeing accomplished an ancient prophecy, which was said to have
pronounced that the castle and lordship of Otranto “should pass

from the present family, whenever the real owner should be
grown too large to inhabit it.”

— Horace Walpole, The Castle of Otranto

The following is a series of guided exercises about Monte Carlo integra-
tion. Its purpose is to illustrate one of the uses of probabilistic thinking in
overcoming computational obstacles.

Numerical Integration
The scientific method demands that any scientific endeavor conclude with
concrete results. In practice this means that your results must usually be
numerical. An architect or engineer would need to provide measurements
for her construction crew, and a scientist must provide predictions that
can be put to the test. The prevalence of integrals in science and the
fact that some integrals don’t have analytic solutions naturally means
that a suitable method for the numerical evaluation of integrals had to be
developed.

In elementary courses of calculus, integration is usually defined as
finding the area under the graph of a bounded function f : [0, 1] → R.
This is usually done by cutting up the domain into n pieces at equidistant
points x0, . . . , xn, and then summing up the areas of the rectangles with
base of ∆x = xi − xi−1, and a height of f(xi). To be specific,∫ 1

0
f(x) dx = lim

n→∞

n∑
i=1

f(xi)∆x

where ∆x = 1/n. This suggests that we can use the partial sums
∑n

i=1 f(xi)∆x
as numerical approximations to the true integral. This actually works pretty
well for integration in one variable, with some minor modification (take
numerical analysis for further details).

What about higher dimensions? In two dimensions, we typically want
to integrate our function f : [0, 1]2 → R over a rectangle [0, 1]2. Typically,
we partition each side of this rectangle into n pieces as we did above,
resulting in the partition points x0, . . . , xn on the x-axis, and y0, . . . , yn

on the y-axis. Consequently, the distance between neighboring points on
either axis is going to be ∆x = ∆y = 1/n.

1

xi−1 xi

yj−1

yj

x

y

∆x

∆y

We approximate the volume of the region under the graph of f as the
sum of the volumes of rectangular prisms whose base has area ∆x∆y and
whose height is f(xi.yi). That is,∫

[0,1]2
f(x) dx dy = lim

n→∞

n∑
i=1

n∑
j=1

f(xi, yj)∆x∆y.

We can estimate this value by a partial sum
∑n

i=1
∑n

j=1 f(xi, yj)∆x∆y.

1. Suppose we want to estimate the integral using the partial sum above.
At how many points do we need to evaluate f? In other words, how many
sample points (xi, yj) are there?

Similarly, to perform numerical integration in d-dimensions, we must
partition each of the d-sides of the hypercube [0, 1]d into n intervals. That is,
we cut up the xi-axis along equidistant points xi0, . . . , xin. We approximate
the volume under the graph of f : [0, 1]d → R by summing up the volumes
of the hyperrectangles with base ∆x1 · · · ∆xd and height f(x1i1 , . . . , xdid

).
That is, ∫

[0,1]d

f(x1, . . . , xd) dx1 · · · dxd

= lim
n→∞

n∑
i1,...,in=1

f(x1i1 , . . . , xdid
)∆x1 · · · ∆xd

Therefore, the process of numerical integration along this idea will look
something like

1. Divide each axis into n equidistant points: {xij : i = 1, . . . , d, j = 0, . . . , n}.
2. Find all sample points S = {(x1i1 , . . . , xdid

) : 1 ≤ i1, . . . , id ≤ n} for
suitably large n.

3. Evaluate the sum
∑

x∈S f(x)∆x1 · · · ∆xd.
This strategy has several flaws. Improving upon it is the goal of this article.

2. For a fixed n, at how many points do we need to evaluate f? That is,
how many sample points do we have? How does the number of sample
points change when we increase the dimension?

3. In your favorite programming language, write a program that numerically
integrates the 10-dimensional Beta(α, β) density. That is,

f(x1, . . . , xd) =
d∏

i=1

xαi−1
i (1 − xi)βi−1

B(αi, βi)
,

2

over the rectangle [0, 1]d where d = 10, B(α, β) is the Beta function. Pick
some values for α1, . . . , αd and β1, . . . , βd at random and use a library
to evaluate the Beta function. Since this is a probability density function,
it should always evaluate to one. See how close you can get it to one by
increasing the number of partition points on each axis (i.e., increasing n).
Do you run into any difficulties?

Monte Carlo Integration
From your solutions to the problems of the previous section, you may
have noticed that the number of sample points increases exponentially as
we increase the dimension. In fact, in my implementation of this “naive”
algorithm, I was not able to integrate the 10-dimensional Beta density
because I could not store all of the sample points! This is an example
of the curse of dimensionality. The remainder of this article explains an
approach for beating the curse of dimensionality (in this particular case)
using probability.

Recall that if x is a uniform random vector on Ω = [0, 1]d, then the
expectation Ef(x) is equal to

∫
Ω f(x) dx. This suggests that if we can

estimate the mean of the random vector f(x), then we can estimate our
desired integral. The obvious thing to do is to take several samples and to
compute the sample mean. That is, generate i.i.d. uniform random vectors
x1, x2, . . . on Ω, so that we can use the sample mean 1

n

∑n
i=1 f(xi) as an

estimator for Ef(x). This approach is called Monte Carlo integration. The
law of large numbers guarantees that as we increase n our estimate will
approach the mean as well. But what makes this better than the previous
method?

4. Show that E[1
n

∑n
i=1 f(xi)] =

∫
Ω f(x) dx. In statistics terminology, this

means that our estimator is unbiased.

Last time we needed a very large number of sample points to get a
good estimate. If we wish to compare this new method with the last one,
we need to find the number of sample points we need to get good “error”.
Typically error is measured using squared difference, which in this case
would be (1

n

∑n
i=1 f(xi)−Ef(x))2. Since our method has some randomness

involved, the error that we can expect to see is given by the expectation of
this loss. This quantity is typically called the risk or L2-error

R = E

(1
n

n∑
i=1

f(xi) − Ef(x)
)2
 .

You will now investigate how large n has to be for R to be sufficiently low.

5. Suppose that f is bounded by M , i.e., that |f(x)| ≤ M for all x ∈ Ω.
Show that Var f(x) is bounded by M2.

6. Show that R = Var
(1

n

∑n
i=1 f(xi)

)
≤ M2

n . This shows that, as n → ∞,
the error goes to zero at about the same speed that 1/n goes to zero.

The last exercise is very important. Notice that the dimension d plays
no part in it. This means that no matter what the dimension is, the new
Monte Carlo method will converge to the true answer in about the same
time. That is, we have managed to beat the curse of dimensionality in the
case of numerical integration.

3

7. Redo exercise 3 but use the Monte Carlo method instead. Compare their
performance, and how easy each one was to implement. (Hint: your Monte
Carlo implementation shouldn’t be longer than 3 lines).

8. Use your program from the previous exercise to estimate the volume of
the d-dimensional unit ball for d = 1, . . . , 100.

9 (Improper integrals). The methods of this section were focused on inte-
gration over bounded sets, exemplified by [0, 1]d. Propose and implement a
Monte Carlo strategy for integrating functions on all of Rd.

4

	Numerical Integration
	Monte Carlo Integration

