
Continuity

1. Show that if f is continuous and f(x + y) = f(x) + f(y) for all x and
y then f(x) = cx for some c and for all x ∈ R.

Solution. We proved in a previous week that if f(x + y) = f(x) + f(y)
then f(x) = cx for all rational x. This time we will use continuity and the
density of the rationals to show that f(x) = cx for all real numbers.

Notice that if |f(a) − ca| < ε for all ε > 0, then f(a) = ca (why?) So we
will show this. Let ε > 0 be arbitrary and notice that

|f(a) − ca| = |f(a) − f(x) + f(x) − ca| ≤ |f(a) − f(x)| + |f(x) − ca|

The |f(a) − f(x)| should tell us that we should use continuity about
here. So let δ be given such that |f(a) − f(x)| < ε/2 if |x − a| < δ. The
previous problem tells us that there is a rational number x such that
|x − a| < min {ε/2|c|, δ1}, which means that

|f(a) − ca| ≤ |f(a) − cx| + |cx − ca| < ε/2 + |c|ε/2|c| = ε

showing that f(a) = ca for all a ∈ R.

2. Suppose that f is continuous at g(a) and g is continuous at a. Show
that f ◦ g is continuous at a.

Solution. Given an arbitrary ε > 0, let δ1 be given such that if |y −g(a)| <
δ1 then |f(y) − f(g(a))| < ε, then let δ2 be given such that if |x − a| < δ2
then |g(x) − g(a)| < δ1.

Suppose that |x − a| < δ2, then |g(x) − g(a)| < δ1, which means that
|f(g(x)) − f(g(a))| < ε, which is what we wanted to show.

3 (Bonus, topology of R). Let Br(a) = {x ∈ R : |x − a| < r} = (a−r, a+r)
denote the open “ball” of radius r about a. A subset U ⊂ R is called open
if every point x ∈ U has an open ball Br(x) which is a proper subset of U .
Show that f is continuous if and only if f−1(U) is open for every open U .

Solution. Lets begin with the forward direction. Suppose that f is con-
tinuous, and that U is an open set. This means that there is an open
ball Bε(f(a)) ⊂ U . The continuity of f means that there is a δ > 0 such
that if 0 < |x − a| < δ then |f(x) − f(a)| < ε, that is, if x ∈ Bδ(a) then
f(x) ∈ Bε(f(a)) ⊂ U . This means that Bδ(a) ⊂ f−1(U), and hence f−1(U)
is open.

Now for the backwards direction, suppose that whenever U is open then
f−1(U) is open. We wish to show that for all ε > 0 there is δ > 0
such that x ∈ (a − δ, a + δ) implies f(x) ∈ (f(a) − ε, f(a) + ε). Let U =
(f(a)−ε, f(a)+ε) which is an open set. This means that f−1(U) is an open
set. Since a ∈ f−1(U), then there is an open ball Bδ(a) = (a−δ, a+δ) which
is a proper subset of a ∈ f−1(U). All this means, is that if x ∈ (a−δ, a+δ),
then f(x) ∈ U = (f(a)−ε, f(a)+ε) which is what we wanted to show.
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The intermediate value theorem

4. Suppose that f is a continuous function on [0, 1] and that f(x) is in
[0, 1] for each x. Prove that f(x) = x for some number x.

Solution. Since f(0) ∈ [0, 1], then either f(0) = 0 or f(0) > 0. In the
first case we would be done so we consider the second case. Similarly,
either f(1) = 1 or f(1) ∈ [0, 1). Again, there is nothing more to do in
the first case. What remains is to check the case where f(0) ∈ (0, 1] and
f(1) ∈ [0, 1). Consider g(x) = f(x) − x. Note that g(0) > 0 and g(1) < 0
which means that, by the intermediate value theorem, there is a point
y ∈ (0, 1) such that g(y) = 0. That is, f(y) = y.

5. Find on all functions which are continuous on [a, b] and which only
take on rational values.

Solution. Intuitively you should be able to guess that these are constant
functions. Suppose that f is not constant, i.e., there are numbers x and
y in [a, b] such that f(x) < f(y). This means that f must take on every
number between [f(x), f(y)] for z between x and y. As we showed last
week, there must be a irrational number in [f(x), f(y)] which means that
there is a point z between x and y such that f(z) /∈ Q. This shows that f
does not only take rational values.

Evaluation of limits

6. Evaluate

lim
x→2

x2 − 4
x2 − 3x + 2 , lim

x→1

( 1
1 − x

− 3
1 − x3

)
Solution. For the first one, we factor the numerator and denominator,

lim
x→2

x2 − 4
x2 − 3x + 2 = lim

x→2

(x + 2)(x − 2)
(x − 2)(x − 1) = lim

x→2

x + 2
x − 1 = 4

Second one has a similar strategy

lim
x→1

( 1
1 − x

− 3
1 − x3

)
= lim

x→1

( 1
1 − x

− 3
(1 − x)(1 + x + x2)

)
= lim

x→1

x2 + x − 2
(1 − x)(1 + x + x2)

= lim
x→1

(x − 1)(x + 2)
(1 − x)(1 + x + x2)

= lim
x→1

−(x + 2)
1 + x + x2

= −1

The following problem is meant to illustrate the technique of using a
continuous substitution in a limit.
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7. Evaluate
lim
x→0

√
1 + x − 1

3√1 + x − 1

Solution. Let
f(x) = x3 − 1

x2 − 1
and notice that if g(x) = 6√1 + x then

f(g(x)) = (1 + x)
3
6 − 1

(1 + x)
2
6 − 1

=
√

1 + x − 1
3√1 + x − 1

.

Since g is continuous at 0 and it equal to g(0) = 1, we have that

lim
x→0

f(g(x)) = lim
x→g(0)

f(x) = lim
x→1

x3 − 1
x2 − 1 = lim

x→1

x2 + x + 1
x + 1 = 3
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Bonus: compactness and the extreme value theorem

Let U be a subset of R. A collection O = {Ai : i ∈ I} is set to be an open
cover of U if each of the Ai’s is open and

U ⊂
⋃
i∈I

Ai.

For instance, the sets O = {Ai = (i, i + 2) : i ∈ N} form an infinite open
cover for U = (2, 3). since they are all open and

U ⊂ A1 ∪ A2 ∪ · · · =
⋃
i∈N

Ai = (1, ∞).

We can also have finite open covers, an example is

O′ = {Ai = (i, i + 2) : i = 1, 2, 3} .

In fact, since every set in O′ is also in O, then O′ is said to be a finite
subcover of O. A set U is said to be compact if every open cover of U has
a finite subcover.

As an example, lets show that U = (2, 3) is not compact. Notice that

U =
⋃

n≥0
(2, 3 − 10−n) = (2, 2) ∪ (2, 2.9) ∪ (2, 2.99) ∪ · · · = (2, 3)

However, if we remove even a single one of these sets then their union will
not cover U .
8. Show that for any a, b ∈ R, the closed interval [a, b] is compact. Hint:
your proof should be similar to the proof of the intermediate value theorem.

A set U is said to be closed if R − U is open. It is said to be bounded if it
is a subset of some closed interval [a, b].
9 (The Heine-Borel Theorem). Show that if U is closed and bounded then
it is compact. Hint: use the compactness of [a, b].
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