Continuity

1. Show that if f is continuous and f(x +y) = f(x) + f(y) for all x and
y then f(x) = cx for some ¢ and for all z € R.

Solution. We proved in a previous week that if f(z +y) = f(x) + f(y)
then f(x) = cx for all rational z. This time we will use continuity and the
density of the rationals to show that f(z) = cx for all real numbers.

Notice that if | f(a) — ca| < € for all € > 0, then f(a) = ca (why?) So we
will show this. Let € > 0 be arbitrary and notice that

f(a) = cal = [f(a) = f(x) + f(z) — ca| < |f(a) = f(2)| + |f(2) — cal

The |f(a) — f(z)| should tell us that we should use continuity about
here. So let § be given such that |f(a) — f(x)| < &/2 if | — a| < 0. The
previous problem tells us that there is a rational number x such that
|z — a| < min {e/2|c|, 61}, which means that

(@) = ca| < [f(a) - cal + |cx — cal < &/2+ |ele/2lc] = ¢

showing that f(a) = ca for all a € R. O

2. Suppose that f is continuous at g(a) and g is continuous at a. Show
that f o g is continuous at a.

Solution. Given an arbitrary ¢ > 0, let §; be given such that if |y — g(a)| <
01 then |f(y) — f(g(a))| < e, then let 3 be given such that if |z — a| < d2
then |g(x) — g(a)| < d;.

Suppose that |x — a| < 09, then |g(z) — g(a)| < 1, which means that
|f(g(x)) — f(g(a))| < e, which is what we wanted to show. O

3 (Bonus, topology of R). Let By(a) ={x € R: |z —a| <r} = (a—r,a+T)
denote the open “ball” of radius r about a. A subset U C R is called open
if every point x € U has an open ball B.(x) which is a proper subset of U.
Show that f is continuous if and only if f~*(U) is open for every open U.

Solution. Lets begin with the forward direction. Suppose that f is con-
tinuous, and that U is an open set. This means that there is an open
ball B.(f(a)) C U. The continuity of f means that there is a ¢ > 0 such
that if 0 < |x —a| < § then |f(z) — f(a)| < ¢, that is, if z € Bs(a) then
f(z) € Bo(f(a)) C U. This means that Bs(a) C f~1(U), and hence f~1(U)

is open.

Now for the backwards direction, suppose that whenever U is open then
f~Y(U) is open. We wish to show that for all ¢ > 0 there is § > 0
such that z € (a — §,a + 9) implies f(x) € (f(a) — ¢, f(a) +€). Let U =
(f(a)—e, f(a)+e¢) which is an open set. This means that f~1(U) is an open
set. Since a € f~1(U), then there is an open ball Bs(a) = (a—4, a+J) which
is a proper subset of a € f~1(U). All this means, is that if € (a —J, a+4),
then f(x) € U = (f(a)—¢, f(a)+¢) which is what we wanted to show. [



The intermediate value theorem

4. Suppose that f is a continuous function on [0,1] and that f(zx) is in
[0,1] for each . Prove that f(x) = x for some number x.

Solution. Since f(0) € [0,1], then either f(0) = 0 or f(0) > 0. In the
first case we would be done so we consider the second case. Similarly,
either f(1) = 1 or f(1) € [0,1). Again, there is nothing more to do in
the first case. What remains is to check the case where f(0) € (0, 1] and
f(1) € ]0,1). Consider g(z) = f(z) — . Note that g(0) > 0 and g(1) <0
which means that, by the intermediate value theorem, there is a point
y € (0,1) such that g(y) = 0. That is, f(y) =v. O

5. Find on all functions which are continuous on [a,b] and which only
take on rational values.

Solution. Intuitively you should be able to guess that these are constant
functions. Suppose that f is not constant, i.e., there are numbers = and
y in [a, b] such that f(z) < f(y). This means that f must take on every
number between [f(z), f(y)] for z between = and y. As we showed last
week, there must be a irrational number in [f(z), f(y)] which means that
there is a point z between x and y such that f(z) ¢ Q. This shows that f
does not only take rational values. O

Evaluation of limits

6. Fvaluate
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Solution. For the first one, we factor the numerator and denominator,
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Second one has a similar strategy
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The following problem is meant to illustrate the technique of using a
continuous substitution in a limit.



7. Evaluate
Vi+x—1
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Solution. Let
3 —1

fla) = 5

X

and notice that if g(z) = v/1 + = then

C(ta)s -1 Jifa-1
flel@)) = (1+a2)s—1 Vita-1

Since ¢ is continuous at 0 and it equal to g(0) = 1, we have that

lim f(g(z)) = lim f(z)= lim z _l—hmwzé

z—0 z—g(0) z—>1 z2—1 251 zx+1 2

Bonus: compactness and the extreme value theorem

Let U be a subset of R. A collection O = {A; : i € I} is set to be an open
cover of U if each of the A;’s is open and

U C U A;.
i€l
For instance, the sets O = {A; = (i,i 4+ 2) : ¢ € N} form an infinite open
cover for U = (2, 3). since they are all open and
UcAUAU .- = UAi: (1,00).
€N
We can also have finite open covers, an example is

O ={A;=(i,i+2):i=1,2,3}.

In fact, since every set in O’ is also in O, then ' is said to be a finite
subcover of O. A set U is said to be compact if every open cover of U has
a finite subcover.

As an example, lets show that U = (2, 3) is not compact. Notice that

U=J(2,3-107")=(2,2)U(2,29)U(2,299) U--- = (2,3)
n>0

However, if we remove even a single one of these sets then their union will
not cover U.

8. Show that for any a,b € R, the closed interval [a,b] is compact. Hint:
your proof should be similar to the proof of the intermediate value theorem.

A set U is said to be closed if R — U is open. It is said to be bounded if it
is a subset of some closed interval [a, b].

9 (The Heine-Borel Theorem). Show that if U is closed and bounded then
it is compact. Hint: use the compactness of [a,b].



